

USO Y VALORIZACION DEL DIGESTATO

FOCO SOBRE LAS VINAZAS

Por Philippe CONIL (BIOTEC)

philippe.conil@bio-tec.net

NO HAY DIGESTATO "ESTANDAR"

No hay dos digestatos que se parezcan, pues dependen de lo que entra en el biodigestor. Lo que entra sale, menos el CH4 y CO2. Así que no hay similitud de concentración, valor y forma de aplicación entre "digestatos" de aguas residuales de fábrica, de cachaza o de vinazas.

Pero en todos los casos, el "digestato" es:

AGUA + NUTRIENTES + MATERIA ORGANICA DIGERIDA

(pH alrededor de 7; relación C/N inferior a 15 y usualmente a 10)

ESTUDIO DE CASO: NEGOCIO DEL BIOETANOL → GENERACION DE VINAZAS

EL FLUJO Y LAS CARACTERISTICAS DEL "DIGESTATO" DEPENDEN DE LA MATERIA PRIMA DE LA DESTILERIA:

Se producen usualmente 12 m3 de vinaza por m3 de bioetanol (y la mitad si recirculamos vinazas a la cuba de fermentación – sistema PRAJ).

La concentración de las vinazas varía según la materia prima de la destilería (jugo de caña, Miel A, Miel B, Miel C), entre 2,5 y 10% MS \rightarrow se genera entre 0,3 y 1,2 T MS/m3 bioetanol.

Valor energético potencial de la vinaza metanizada

1 T MS vinazas \rightarrow aprox. 250 m3 CH4 (=aprox. 62 US\$ @0,25 US\$/m3) 100 T DQO/día \rightarrow +/- 100 T MS/día \rightarrow 6.200 US\$/día (2 M US\$/año)

Valor comercial de los macronutrientes NPK de la vinaza metanizada

1 T MS vinazas → entre 70 a 140 US\$

(proveniente en su mayor parte de su contenido en potasio)

100 T MS/día → entre 7.000 y 14.000 US\$/día (2 a 4 M US\$/año)

Además, la valorización agrícola de la vinaza permite:

- Aportar los demás macronutrientes y micronutrientes
- Aportar ácidos húmicos (\$)
- Evitar todo vertimiento a la cuenca (pues se aplica a los suelos)
- Reducir la huella de carbono del bioetanol (\$)

COMPOSICION DE LA VINAZA Y VALOR AGRICOLA POTENCIAL

MS: 2,5 a 12% (→ AGUA: 88% (Miel C) a 97,5% (jugo))

Nutrientes (composición aproximada- sobre MS):

- N: 0,9 a 2%
- P2O5: < 0,2%
- K2O: 6 a 10%
- CaO: 2,5 a 3%
- MgO: 1 a 2%
- SO4: 3,5 a 6%

A saber: 14 a 23% de macro-nutrientes de los cuales 7 a 12% de NPK

- → Valor teórico NPK: 140 a 280 US\$/T MS (@2.000 US\$/T)
- → Valor comercial (de venta) NPK: 70 a 140 US\$/T MS de vinaza
- → Para 100 T MS/día: 2 a 4 M US\$/año + micros + ácidos húmicos

SISTEMAS DE MANEJO DE LA VINAZA <u>CRUDA</u> MAS DIFUNDIDOS EN LA ACTUALIDAD EN AMERICA LATINA:

- Aplicación líquida por riego (Brasil)
- Evaporación + aplicación líquida por carrotanque
- Evaporación + co-compostaje con cachaza

CO-COMPOSTAJE CON CACHAZA / APLICACIÓN LIQUIDA

MANEJO EN INDIA A LA FECHA

Hay aprox. 440 ingenios y 220 destilerías (tamaño medio 60.000 litros/día)

En su gran mayoría: Evaporación de vinaza metanizada (pH 7,5)

- + mezcla con compost de cachaza
- + mezcla con bagazo o cascarilla + secado en tambores rotatorios
- + secado (Spray Dryer) hasta polvo (=Bio-Evapo-Secado)

Caso específico: Evaporación de vinaza cruda (pH 4) + combustión en caldera (aprox. 15 proyectos)

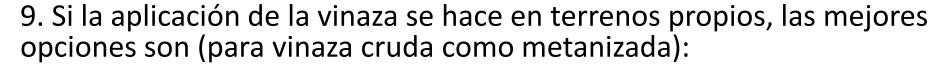
(=caso particular para India donde se sigue utilizando carbon como combustible)

METANIZACION – REACTORES TANQUES O LAGUNAS

EVAPORACION Y SECADO DE VINAZAS

EVAPORACION Y SECADO DE VINAZAS

INNOVACION: BIO-EVAPO-SECADO DE VINAZAS



CONCEPTOS:

- 1. Descargar vinaza a la cuenca, aun después de un tratamiento avanzado, puede ser una solución provisional para cumplir con una normatividad, pero no tiene sentido ni económico ni ambiental, y no es solución para la agro-industria
- 2. Quemar la vinaza (materia orgánica líquida) tiene un costo de inversión muy alto, un consumo de carbón alto, y requiere un precio de venta subsidiado de la electricidad. El impacto ambiental (aire / cenizas) debe además ser evaluado.
- 3. La metanización ya se ha vuelto una tecnología "tradicional" para las vinazas (la más común en India entre sus 220 destilerías): mas de 170 biodigestores de vinazas en el país
- 4. Metanizar la vinaza para generar gas tiene T.I.R., que varía <u>según el uso/precio del gas</u>, mas no soluciona el problema del vertido final

- 5. Evaporar vinaza cruda tiene limitaciones: altos costos de evaporación (inversión + vapor) y de manejo (transporte + aplicación) vs. bajo valor por m3 crudo o por m3 concentrado (debido a la dilución y al estado "crudo" del material)
- 6. El valor de macronutrientes de la vinaza (70 a 140 US\$/ T MS) es mayor a su valor energético (gas) (0 a 60 US\$/T MS) y además permite llegar a "cero descarga" → es el enfoque
- 7. Al metanizar la vinaza se volatiza la materia orgánica (SV) en forma de CH4 y CO2, se transforma en ácidos húmicos (fúlvicos). Por lo tanto, la MS restante se concentra en nutrientes (+/- en un factor 3).
 - → La metanización reduce la cantidad de MS a manejar y genera mayor VALOR por T de MS
- 8. La metanización permite además generar la energía requerida tanto para evaporación como para secado

- 1) la aplicación líquida (ferti-irrigación)
- 2) la evaporación + aplicación líquida por carrotanque
- 3) la evaporación + mezcla con biomasa y secado en tambores rotatorios
- 4) el co-compostaje con cachaza
- 10. Si la aplicación local de vinaza no es posible o no es recomendable, o si la destilería quiere abrirse a otro coproducto, el mejor negocio es generar POLVO SECO, un producto fácil de almacenar que tiene aprox. el 4% de N y 25% de K2O, y mas del 12% de ácidos fúlvicos.
- 11. El país donde la evaporación de vinazas es mas desarrollada es India, en casi el 100% de sus destilerías.

- 12. La evaporación de vinaza cruda dio paso a la evaporación de vinaza metanizada, para poder contar con el biogas como combustible de la evaporación
- 13. Al tener que comercializar el biofertilizante (por falta de plantaciones propias aledañas o por saturación de suelos en potasio), el secado final hasta polvo es casi necesario
- 14. La empresa SSP (<u>www.sspindia.com</u>) ha sido la pionera en evaporación de vinaza **metanizada** en India (en unas 65 destilerías) así como en su secado con "Spray Dryer", ambos equipos abastecidos con biogas en forma directa o en forma de vapor
- 15. Generación de gas para evapo-secado según la materia prima de la destilería:
 - Miel B → la generación de gas es suficiente para la evaporación y el secado
 - Jugo de caña → no lo es
 - Miel C (o destilerías PRAJ con recirculación de vinazas a la cuba de fermentación) → la generación de gas es superior a las necesidades de evaporación y secado → se puede tener excesos para venta de gas natural renovable

CONCLUSION: B-E-S = UNA INNOVACION "DISRUPTIVA"

- La metanización provee el gas (GNR) necesario para la evaporación y secado de la vinaza (metanizada) -> balance energético neutro
- La metanización concentra el biofertilizante en nutrientes (aprox. 3 x)
 → incrementa tres veces el valor del biofertilizante por tonelada → se justifica su mercadeo (hasta mercados agrícolas lejanos que tienen mas necesidad de potasio, de azufre y de ácidos húmicos que la caña aledaña)

REFERENCIAS RECIENTES (desde 2006)

PLANTAS DE BIOGAS

NOMBRE	PAIS	m³ CH ₄ /año
--------	------	-------------------------

		4
EEcopalsa	Honduras	1.800.000
El Espino	Peru	3.000.000
Agrotor	Honduras	3.750.000
Export. Atlantico	Honduras	3.750.000
ERH - Hondupalma	Honduras	3.000.000
EEcopalsa 2	Honduras	1.200.000
Ulu Kankhong	Malaysia	4.500.000
Pelakar	Indonesia	4.050.000
BPM	Indonesia	4.050.000
Manuelita	Colombia	4.950.000
Induspalma	Rep. Dominicana	2.250.000
Oro Rojo	Colombia	2.250.000
Asian Plantations	Malaysia	1.050.000
Gengka 3	Malaysia	5.250.000
Gopdc	Ghana	2.250.000
Kapilit	Malaysia	3.150.000
Makouke	Gabon	450.000
Presco	Nigeria	3.000.000
Agropalma	Brazil	7.500.000
Aguan G	Honduras	4.500.000
Tuing	Indonesia	3.750.000
Seraya-Benta	Malaysia	4.500.000
Taner	Malaysia	1.800.000
BBS	Indonesia	3.000.000
Batu Bulan (BTB)	Indonesia	4.500.000
MSE	Indonesia	4.500.000

EVAPORADORES DE EFLUENTES/SECADO

NOMBRE	PAIS	CAPACIDAD (m³/día)	INDUSTRIA
Ashoka Distill. & Chem	India	750	Vinazas metanizadas
IFB Agro Industries Ltd	India	750	Vinazas metanizadas
Nizam Deccam Sugars	India	600	Vinazas metanizadas
Pioneer Distilleries	India	1200	Vinazas metanizadas
Harmond Adv. Techn.	Vietnam	720	Vinazas metanizadas
Piccadily Agro Industries	India	600	Vinazas metanizadas
Balezaf Alcohol & Liquors	Ethiopia	300	Alcohol y licor
Gayatri Sugars Ltd	India	540	Vinazas metanizadas
KCP Sugar & Ind. Corp	India	600	Vinazas metanizadas
Athani Sugars	India	900	Destilería a base de melaza
India Glycol	India	2400	Vinazas crudas
S.V. Sugar Mills	India	1100	Vinazas metanizadas
SCM Sugar	India	600	Vinazas metanizadas
Shakumbari Sugar & Allied	India	2400	Vinazas crudas
Simbhaoli Sugar Mills	India	800	Vinazas crudas
Ugar Sugar Works	India	700	Vinazas metanizadas
United Spirits	India	750	Vinazas metanizadas
Triveni Engineering & Ind.	India	840	Efluentes de destilerías
Raymond Luxary Cotton	India	400	Textiles
Thai SilicateChem. Co.	Thailand	180	Químicos
Jubilant Life Sciences	India	150	Farmacéutica
Toshiba	India	1630	Levaduras
Iran Mellas Co.	Qatar	800	Químicos
Yansab, SABIC (eTEC E&C)	S. Arabia	1000	Petroquímicos
Godrej Agrovet	India	300	Palma de aceite
Thai Silicate Chem. Co	Thailand	219	Químicos

USO Y VALORIZACION DEL DIGESTATO

FOCO SOBRE LAS VINAZAS

Por Philippe CONIL (BIOTEC)

philippe.conil@bio-tec.net