Biología
Transformación y edición genética de la caña de azúcar
López Gerena, J.; Jaimes Quiñónez, H. A. | NOV 2023 | ISBN 978-958-8449-30-2
Introducción
En las últimas dos décadas se han incrementado las investigaciones orientadas a desarrollar herramientas biotecnológicas en el cultivo de la caña de azúcar (Saccharum spp.) para evaluar factores como el contenido de sacarosa de la caña, las toneladas de caña obtenidas por hectárea (TCH) y su resistencia al estrés biótico y abiótico, mediante el cultivo de tejidos y la ingeniería genética. Ese enfoque se refleja en la mejora de los indicadores de productividad del cultivo. La producción mundial de azúcar y bioetanol, así como el uso de la caña de azúcar como biofábrica plantean la necesidad de una producción sostenible, lo cual exige investigar exhaustivamente los factores que inciden en el mejora-miento del cultivo para contrarrestar las adversidades del cambio climático, que impactan directamente en la productividad del cultivo. Estas mejoras genéticas –en cualquier especie–, especialmente para rasgos de herencia cuantitativa, serán exitosas solo cuando se cuente con métodos eficientes de transferencia o edición de genes y regeneración de plantas completas.
Este capítulo discute los avances recientes en los métodos de transformación de la caña de azúcar, en especial la biobalística y la mediada por Agrobacterium en el sistema monocotiledóneo de Saccharum spp. Además, relaciona hallazgos ya aplicados en la caña de azúcar, como las nuevas técnicas de edición genética basadas en nucleasas efectoras TALEN, así como la más reciente metodología –que augura una mayor aplicación en plantas– de edición genética usando el sistema CRISPR–Cas9 (repeticiones palindrómicas agrupadas y regularmente interes-paciadas). Aplicar estos avances en la caña de azúcar requiere un método de transformación eficiente que incluya en el mediano plazo un sistema de edición genética libre de ADN, para que las variedades resultantes sean consideradas como cultivares convencionales y no modificadas, como lo dispone la Resolución 29299 de agosto de 2018 del Instituto Colombiano Agropecuario (ICA).
Acerca de los autores
López Gerena, J.
Biólogo de la Universidad del Valle. En 2006 recibió Ph.D. en Fitopatología con énfasis en Biología Molecular de Kansas State University, USA. Diplomado en Bioinformática 2016 y Diplomado en Alta Gerencia 2013. Entre el año 1993 a 2000 fue asistente de investigación en La Unidad de Biotecnología del Centro Internacional de Agricultura Tropical (CIAT). Desde 2006 es Biotecnólogo del Área de Biotecnología, Programa de Variedades del Centro de investigación de la caña de azúcar de Colombia, Cenicaña. Treinta años de experiencia científica y técnica especialmente en la identificación de marcadores moleculares y genes asociados con variables de productividad, resistencia a plagas y enfermedades. Experiencia a nivel administrativo en coordinación, gestión de proyectos y bioseguridad de Organismos Genéticamente Modificados (OGM). Ha sido tutor de estudiantes de pregrado y posgrado e investigador principal y co-investigador de proyectos cofinanciados por MinCiencias y Ministerio de Agricultura y Desarrollo Rural. Actualmente lidera la línea de investigación en Transformación Genética y Edición Genómica aplicados al mejoramiento molecular de la caña de azúcar.
Jaimes Quiñónez, H. A.
Biólogo con énfasis en genética egresado de la Universidad del Valle en el año 2005. Llevó a cabo su trabajo de grado en el tema de transformación genética de Yuca en el Centro Internacional de Agricultura Tropical (CIAT) entre los años 2003 y 2005, donde luego trabajó en proyectos de investigación relacionados con resistencia varietal a plagas en fríjol y evaluación molecular de plantas transgénicas de arroz hasta el año 2008. A partir de Octubre de 2008 se unió al laboratorio de biotecnología del Centro de investigación de la caña de azúcar de Colombia, Cenicaña como asistente de investigación en proyectos relacionados con transformación/edición genética, genómica y transcriptómica de caña de azúcar. Actualmente se encuentra involucrado proyectos de selección asistida por marcadores para la implementación de las estrategias GWAS y Selección Genómica para asistir procesos de mejoramiento en Cenicaña.
Altpeter, F.; & Oraby, H. (2010). Sugarcane. In: F. Kempken & C. Jung (Eds.). Genetic Modification of Plants, Biotechnology in Agriculture and Forestry, 64 (pp. 453–472). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-02391-0 Altpeter, F.; Springer, N. M.; Bartley, L. E.; Blechl, A. E.; Brutnell, T. P.; Citovsky, V.; Conrad, L. J.; Gelvin, S. B.; Jackson, D. P.; Kausch, A. P.; Lemaux, P. G.; Medford, J. I.; Orozco-Cárdenas, M. L.; Tricoli, D. M.; Van Eck, J.; Voytas, D. F.; Walbot, V.; Wang,
K.; Zhang, Z. J. & Stewart, C. N., Jr (2016). Advancing Crop Transformation in the Era of Genome Editing. The Plant cell, 28(7), pp. 1510-1520. https://doi.org/10.1105/tpc.16.00196
Anderson, D. J.; Gnanasambandam, A.; Mills, E.; O’Shea, M. G.; Nielsen, L. K. & Brumbley, S. M. (2011). Synthesis of Short-Chain-Length/Medium-Chain Length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisomes of Transgenic Sugarcane Plants. Tropical Plant Biology 4, pp. 170-184. https://doi.org/10.1007/s12042-011-9080-7
Anderson, D. J. & Birch, R. G. (2012). Minimal Handling and Super-Binary Vectors Facilitate Efficient, Agrobacterium-Mediated, Transformation of Sugarcane (Saccharum spp.hybrid). Tropical Plant Biology, 5(2), pp. 183-192 https://doi.org/10.1007/s12042-012-9101-1
Arencibia, A. D.; Molina, P.; Gutiérrez, C.; Fuentes, A.; Greenidge, V.; Menéndez, E.; Selman-Housein, G. (1992). Regeneration of transgenic sugarcane (Saccharum officinarum L.) plants from intact meristematic tissue transformed by electroporation. Biotecnología aplicada, 9, pp. 156-165.
Arencibia, A.; Molina, P. R.; de la Riva, G. & Selman-Housein, G. (1995). Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant cell reports, 14(5), pp. 305-309. https://doi.org/10.1007/BF00232033
Arencibia, A.; Vázquez, R. I.; Prieto, D.; Téllez, P.; Carmona, E. R.; Coego, A.; Hernández, L.; De la Riva, G. & Selman-Housein, G. (1997). Transgenic sugarcane plants resistant to stem borer attack. Molecular Breeding, 3(4), pp. 247-255. https://doi.org/10.1023/A:1009616318854
Arencibia, A. D.; Carmona, E. R.; Téllez, P.; Chan, M. T.; Yu, S. M.; Trujillo, L. E. & Oramas, P. (1998). An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Research, 7(3), pp. 213-222. https://doi.org/10.1023/A:1008845114531
Arencibia, A. D.; Carmona, E. R.; Cornide, M. T.; Castiglione, S.; O’Relly, J.; Chinea, A.; Oramas, P. & Sala, F. (1999). Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Research, 8, pp. 349-360. https://doi.org/10.1023/A:1008900230144
Arvinth, S.; Arun, S.; Selvakesavan, R. K.; Srikanth, J.; Mukunthan, N.; Ananda Kumar, P.; Premachandran, M. N. & Subramonian, N. (2010). Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant cell reports 29(4), pp. 383-395. https://doi.org/10.1007/s00299-010-0829-5
Aslam, U.; Tabassum, B.; Nasir, I. A.; Khan, A. & Husnain, T. (2018). A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgenic research, 27(2), pp. 203-210. https://doi.org/10.1007/s11248-018-0066-1
Augustine, S. M.; Narayan, J. A.; Syamaladevi, D. P.; Appunu, C.; Chakravarthi, M.; Ravichandran, V. & Subramonian, N. (2015). Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharumspp. hybrid). Plant science: an international journal of experimental plant biology, 232, pp. 23-34. https://doi.org/10.1016/j.plantsci.2014.12.012
Augustine, S. M. (2017). CRISPR-Cas9 System as a Genome Editing Tool in Sugarcane. In C. Mohan (Ed.), Sugarcane Biotechnology: Challenges and Prospects (pp. 155-172).Sao Carlos, Brasil: Springer International Publishing. https://doi.org/10.1007/978-3-319-58946-6_11
Avellaneda, M.C.; Victoria, J. I. (2008). Avances en la resistencia transgénica de la variedad CC 85-92 a escaldadura de la hoja (LSD) y raquitismo de la soca (RSD). Cenicaña. Informe final. Cali.
Barba, R. & Nickell, L. G. (1969). Nutrition and organ differentiation in tissue cultures of sugarcane, a monocotyledon. Planta, 89(3), pp. 299-302. https://doi.org/10.1007/BF00385034
Barros, G. O.; Ballen, M. A.; Woodard, S. L.; Wilken, L. R.; White, S. G.; Damaj, M. B.; Mirkov, T. E. & Nikolov, Z. L. (2013). Recovery of bovine lysozyme from transgenic sugarcane stalks: extraction, membrane filtration, and purification. Bioprocess and biosystems engineering, 36(10), 1407-1416. https://doi.org/10.1007/s00449-012-0878-y
Basnayake, S. W.; Morgan, T. C.; Wu, L. & Birch, R. G. (2012). Field performance of transgenic sugarcane expressing isomaltulose synthase. Plant biotechnology journal, 10(2), 217-225. https://doi.org/10.1111/j.1467-7652.2011.00655.x
Bonilla, M. L. (2007). Embriogénesis somática y expresión transitoria del gen GUS como fase previa en el desarrollo de una metodología de transformación genética en caña de azúcar (Saccharum spp.) mediante Agrobacterium tumefaciens. Tesis de Maestría. Universidad Nacional de Colombia, Sede Palmira. Colombia.
Bonilla, M. L.; Muñoz, J. E.; Ángel, F. (2008). Expresión transitoria del gen GUS en caña de azúcar usando Agrobacterium tumefaciens. Acta Agronómica, 57 (3), 161-166.
Beyene, G.; Curtis, I. S.; Damaj, M. B.; Buenrostro-Nava, M. T. & Erik, M. T. (2013). Genetic Engineering of Saccharum. In: H. A. Paterson (Ed.), Genomics of the Saccharinae, Plant Genetics and Genomics: Crops and Models. New York.
Molinari, HBC.; Marur, CJ.; Daros, E.; Campos, MKF.; Carvalho, JF.; Bespalhok, JC.; Pereira, LFP.; Vieira, LGE (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130(2): pp. 218-229. https://doi.org/10.1111/j.1399-3054.2007.00909.x
Cristofoletti, P. T.; Kemper, E. L.; Capella, A. N.; Carmago, S. R.; Cazoto, J. L.; Ferrari, F.; Galvan, T. L.; Gauer, L.; Monge, G.A.; Nishikawa, M.A.; Santos, M.; Semeao, A. A.; Silva, L.; Willse, A. R.; Zanca, A. & Edgerton, M. D. (2018). Development of Transgenic Sugarcane Resistant to Sugarcane Borer. Tropical Plant Biology, pp. 1-14. https://doi.org/10.1007/s12042-018-9198-y
Dermawan, H.; Karan, R.; Jung, J. H.; Zhao, Y.; Parajuli, S.; Sanahuja, G. & Altpeter, F.(2016). Development of an intragenic gene transfer and selection protocol for sugarcane resulting in resistance to acetolactate synthase-inhibiting herbicide. Plant Cell, Tissue and Organ Culture, 126(3), pp. 459-468. https://doi.org/10.1007/s11240-016-1014-5
Dong, S.; Delucca, P.; Geijskes, R. J.; Ke, J.; Mayo, K.; Mai, P.; Sainz, M.; Caffall, K.; Moser, T.; Yarnall, M.; Setliff, K.; Jain, R.; Rawls, E.; Smith-Jones, M. & Dunder, E. (2014). Advances in Agrobacterium-Mediated Sugarcane Transformation and Stable Transgene Expression. Sugar Tech. https://doi.org/10.1007/s12355-013-0294-x
Elliott, A. R.; Campbell, J. A.; Dugdale, B.; Brettell, R. I. S. & Grof, C. P. L. (1999). Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Reports, 18, pp. 707-714. https://doi.org/10.1007/s002990050647
Enríquez-Obregón, G. A.; Vázquez-Padrón, R.; Prieto-Samsónov, D. L.; De la Riva, G. & Selman-Housein, G. (1998). Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta, 206, pp. 20-27. https://doi.org/10.1007/s004250050369.
Falco, M. C.; Tulmann Neto, A. & Ulian, E. C. (2000). Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant cell reports, 19(12), pp.1188-1194. https://doi.org/10.1007/s002990000253
Ferreira, S. J.; Kossmann, J.; Lloyd, J. R. & Groenewald, J. H. (2008). The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines. Biotechnology journal, 3(11), pp. 1398-1406. https://doi.org/10.1002/biot.200800106
Gallo-Meagher, M. & Irvine, J. E. (1996). Herbicide Resistant Transgenic Sugarcane Plants Containing the bar Gene. Crop Science, 36(5), 1367. https://doi.org/10.2135/cropsci1996.0011183X003600050047x
Gambley, R. L.; Ford, R. & Smith, G. R. (1993). Microprojectile transformation of sugarcane meristems and regeneration of shoots expressing β-Glucuronidase. Plant cell reports, 12(6), pp. 343-346. https://doi.org/10.1007/BF00237432
Gao, S.; Yang, Y.; Wang, C.; Guo, J.; Zhou, D.; Wu, Q.; Su, Y.; Xu, L. & Que, Y. (2016). Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer. PloS one, 11(4), e0153929. https://doi.org/10.1371/journal.pone.0153929
Garsmeur, O;, Droc, G.; Antonise, R.; Grimwood, J.; Potier, B.; Aitken, K.; Jenkins, J.; Martin, G.; Charron, C.; Hervouet, C.; Costet, L.; Yahiaoui, N.; Healey, A.; Sims, D.; Cherukuri, Y.; Sreedasyam, A.; Kilian, A.; Chan, A.; Van Sluys, M. A.; Swaminathan,
K.; D’Hont, A. (2018). A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nature communications, 9(1), 2638. https://doi.org/10.1038/s41467-018-05051-5
Gilbert, R. A.; Gallo-Meagher, M.; Comstock, J. C.; Miller, J. D.; Jain, M. & Abouzid, A. (2005). Agronomic Evaluation of Sugarcane Lines Transformed for Resistance to Sugarcane mosaic virus Strain E, 45, pp. 2060-2067. Retrieved from https://dl.sciencesocieties.org/publications/cs/abstracts/45/5/2060
Gilbert, R. A.; Glynn, N. C.; Comstock, J. C. & Davis, M. J. (2009). Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crops Research, 111(1–2), pp. 39-46. https://doi.org/10.1016/j.fcr.2008.10.009
Groenewald, J. H. & Botha, F. C. (2008). Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic research, 17(1), pp. 85-92. https://doi.org/10.1007/s11248-007-9079-x
Guerzoni, J. T. S.; Belintani, N. G.; Moreira, R. M. P.; Hoshino, A. A.; Domingues, D. S.; Filho, J. C. B. & Vieira, L. G. E. (2014). Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum, 36(9), pp. 2309-2319. https://doi.org/10.1007/s11738-014-1579-8
Hall, R. M.; Geijskes, R. J.; Harrison, M. D.; Jepson, I.; Kinkema, M.; Miles, S.; Dale, J. L. (2013). Improved Expression of Cellulolytic Enzymes in Sugarcane. In: Proc. Int. Soc. Sugar Cane Technol, vol. 28, pp. 1-12.
Hamerli, D. & Birch, R. G. (2011). Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant biotechnology journal, 9(1), pp. 32-37. https://doi.org/10.1111/j.1467-7652.2010.00528.x
Harrison, M. D.; Geijskes, J.; Coleman, H. D.; Shand, K.; Kinkema, M.; Palupe, A.; Hassall, R.; Sainz, M.; Lloyd, R.; Miles, S. & Dale, J. L. (2011). Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant biotechnology journal, 9(8), pp. 884-896. https://doi.org/10.1111/j.1467- 7652.2011.00597.x
Heinz, D. J. & Mee, G. W. P. (1969). Plant Differentiation from Callus Tissue of Saccharum Species. Crop Science, 9(3), 346 pp. https://doi.org/10.2135/cropsci1969.0011183X000900030030x
Ingelbrecht, I. L.; Irvine, J. E. & Mirkov, T. E. (1999). Posttranscriptional gene silencing in transgenic sugarcane. Dissection Of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant physiology, 119(4), pp. 1187-1198. https://doi.org/10.1104/pp.119.4.1187
ISAAA. (2013). Indonesia Approves First GM Sugarcane- Crop Biotech Update ( 5/22/2013 ) | ISAAA.org/KC. Retrieved April 10, 2018, from http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=10989
ISAAA. (2017). Brazil Approves GM Sugarcane for Commercial Use- Crop Biotech Update (6/14/2017 ) | ISAAA.org/KC. Retrieved April 10, 2018, from http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=15510
Jackson, M. A.; Nutt, K. A.; Hassall, R. & Rae, A. L. (2010). Comparative efficiency of subcellular targeting signals for expression of a toxic protein in sugarcane. Functional Plant Biology, 37(8), pp. 785-793. https://doi.org/10.1071/FP09243
Jain, M.; Chengalrayan, K.; Abouzid, A. & Gallo, M. (2007). Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharumspp. hybrid) plants. Plant cell reports, 26(5), pp. 581-590. https://doi.org/10.1007/s00299-006-0244-0
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A. & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.), 337(6096), pp. 816-821. https://doi.org/10.1126/science.1225829
Joyce, P.A.; McQualter, R.B.; Bernard, M.J. and Smith, G.R. (1998). Engineering for resistance to SCMV in sugarcane. Acta Hortic. 461, pp. 385-392. https://doi: 10.17660/ActaHortic.1998.461.44
Joyce, P.; Kuwahata, M.; Turner, N. & Lakshmanan, P. (2010). Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant cell reports, 29(2), 173–183. https://doi.org/10.1007/s00299-009-0810-3
Joyce, P.; Hermann, S.; O’Connell, A.; Dinh, Q.; Shumbe, L. & Lakshmanan, P. (2014). Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. Plant biotechnology journal, 12(4), pp. 411-424. https://doi.org/10.1111/pbi.12148
Jung, J. H.; Fouad, W. M.; Vermerris, W.; Gallo, M. & Altpeter, F. (2012). RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant biotechnology journal, 10(9), pp. 1067-1076. https://doi.org/10.1111/j.1467-7652.2012.00734.x
Jung, J. H.; Vermerris, W.; Gallo, M.; Fedenko, J. R.; Erickson, J. E. & Altpeter, F. (2013). RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant biotechnology journal, 11(6), pp. 709-716. https://doi.org/10.1111/pbi.12061
Jung, J. H.; & Altpeter, F. (2016). TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant molecular biology, 92 (1-2), pp. 131-142. https://doi.org/10.1007/s11103-016-0499-y
Jung, J. H.; Kannan, B.; Dermawan, H.; Moxley, G. W. & Altpeter, F. (2016). Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane. Plant molecular biology, 92 (4-5), pp. 505-517. https://doi.org/10.1007/s11103-016-0527-y
Kannan, B.; Jung, J. H.; Moxley, G. W.; Lee, S. M. & Altpeter, F. (2018). TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant biotechnology journal, 16 (4), pp. 856-866. https://doi.org/10.1111/pbi.12833
Kim, J. Y.; Nong, G.; Rice, J. D.; Gallo, M.; Preston, J. F. & Altpeter, F. (2017). In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane. Plant molecular biology, 93 (4-5), pp. 465-478. https://doi.org/10.1007/s11103-016-0573-5
Kinkema, M.; Geijskes, J.; Delucca, P.; Palupe, A.; Shand, K.; Coleman, H. D.; Brinin, A.; Williams, B.; Sainz, M. & Dale, J. L. (2014). Improved molecular tools for sugar cane biotechnology. Plant molecular biology, 84 (4-5), pp. 497-508. https://doi.org/10.1007/s11103-013-0147-8
Lakshamanan, P.; Geijskes, R. J.; Karen, A.; Grof, C. L. P.; Bonnett, G. D. & Smith, G. R. (2005). Invited review: sugarcane biotechnology: the challenges and opportunities. In Vitro Cell. Dev. Biol. Plant, 41, pp. 345-363.
Li, J. F.; Norville, J. E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G. M. & Sheen, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature biotechnology, 31 (8), pp. 688-691. https://doi.org/10.1038/nbt.2654
Li, J.; Phan, T. T.; Li, Y. R.; Xing, Y. X. & Yang, L. T. (2018). Solation, transformation and overexpression of sugarcane SoP5CS gene for drought tolerance improvement. Sugar Tech, 20 (4), pp. 464–473. https://doi.org/10.1007/s12355-017-0568-9
Ma, H.; Albert, H. H.; Paull, R. & Moore, P. H. (2000). Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Functional Plant Biology, 27 (11), pp. 1021-1030. Retrieved from https://doi.org/10.1071/PP00029
Manickavasagam, M.; Ganapathi, A.; Anbazhagan, V. R.; Sudhakar, B.; Selvaraj, N.; Vasudevan, A.; & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids)using axillary buds. Plant cell reports, 23 (3), pp. 134-143. https://doi.org/10.1007/s00299-004-0794-y
Mayavan, S.; Subramanyam, K.; Arun, M.; Rajesh, M.; Kapil Dev, G.; Sivanandhan, G.; Jaganath, B.; Manickavasagam, M.; Selvaraj, N. & Ganapathi, A. (2013). Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant cell reports, 32 (10), pp. 1557-1574. https://doi.org/10.1007/s00299-013-1467-5
Mayavan, S.; Subramanyam, K.; Jaganath, B.; Sathish, D.; Manickavasagam, M. & Ganapathi, A. (2015). Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant cell reports, 34 (10), pp. 1835-1848. https://doi.org/10.1007/s00299-015-1831-8
McQualter, R. B.; Dale, J. L.; Harding, R. M.; McMahon, J. A. & Smith, G. R. (2004). Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Australian Journal of Agricultural Research, 55 (2), pp. 139-145. https://doi.org/10.1071/AR03131
McQualter, R. B.; Chong, B. F.; Meyer, K.; Van Dyk, D. E.; O’Shea, M. G.; Walton, N. J.; Viitanen, P. V. & Brumbley, S. M. (2005). Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant biotechnology journal, 3 (1), pp. 29-41. https://doi.org/10.1111/j.1467-7652.2004.00095.x
McQualter, R. B. & Dookun-Saumtally, A. (2007). Expression profiling of abiotic-stress-inducible genes in sugarcane. In: Proc Int Soc Sugar Cane Technol, vol. 26, pp. 878-888).
Mohan C. (2016). Genome Editing in Sugarcane: Challenges Ahead. Frontiers in plant science, 7, 1542 pp. https://doi.org/10.3389/fpls.2016.01542
Moore, P. H.; Paterson, A. H. & Tew, T. (2013). Sugarcane: The Crop, the Plant, and Domestication. In: Sugarcane: Physiology, Biochemistry, and Functional Biology (pp. 1-17). Chichester, UK: John Wiley & Sons Ltd. https://doi.org/10.1002/9781118771280.ch1
Mosquera, P. A. (2011). Expresión transitoria del gen Gus Plus(R) en callo embriogénico de caña de azúcar (Saccharum sp.) mediante bombardeo de microparticulas utilizando el dispositivo Hepta-Cenicaña. Tesis de Pregrado. Universidad del Valle, Cali. Colombia.
Mudge, S. R.; Basnayake, S. W.; Moyle, R. L.; Osabe, K.; Graham, M. W.; Morgan, T. E. & Birch, R. G. (2013). Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant biotechnology journal, 11 (4), pp. 502-509. https://doi.org/10.1111/pbi.12038
Nayyar, S.; Sharma, B. K.; Kaur, A.; Kalia, A.; Sanghera, G. S; Thind, K. S.; Yadav, I. S. & Sandhu, J. S. (2017). Red rot resistant transgenic sugarcane developed through expression of β-1,3-glucanase gene. PloS one, 12 (6), e0179723. https://doi. org/10.1371/journal.pone.0179723
Petrasovits, L. A.; McQualter, R. B.; Gebbie, L. K.; Blackman, D. M.; Nielsen, L. K. & Brumbley, S. M. (2013). Chemical inhibition of acetyl coenzyme A carboxylase as a strategy to increase polyhydroxybutyrate yields in transgenic sugarcane. Plant biotechnology journal, 11 (9), pp. 1146-1151. https://doi.org/10.1111/pbi.12109 Podevin, N.; Davies, H. V.; Hartung, F.; Nogué, F. & Casacuberta, J. M. (2013). Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends in biotechnology, 31 (6), 375-383. https://doi.org/10.1016/j.tibtech.2013.03.004
Ramasamy, M.; Mora, V.; Damaj, M. B.; Padilla, C. S.; Ramos, N.; Rossi, D.; Solís-Gracia, N.; Vargas-Bautista, C.; Irigoyen, S.; DaSilva, J. A.; Mirkov, T. E. & Mandadi, K. K. (2018). A biolistic-based genetic transformation system applicable to a broad-range of sugarcane and energycane varieties. GM crops & food, 9 (4), pp. 211-227. https://doi.org/10.1080/21645698.2018.1553836
Rangel, M. P.; Tabares Z., E.; Lentini, Z.; Tohme M., J.; Mirkov, E.; Victoria Kafure, J. I. & Angel, F. (2002). Transformación de plantas de caña de azúcar susceptibles al síndrome de la hoja amarilla = Transformation of sugar cane plants susceptible to yellow leaf virus. Revista Colombiana de Biotecnología, 4 (1), 54-60.
Rangel, M. P.; Gómez, L.; Victoria, J. I. & Angel, F. (2005). Transgenic plants of CC 84-75 resistant to the virus associated with the sugarcane yellow leaf disease. In: Proc. ISSCT, vol. 25, pp. 564-570). Ciudad de Guatemala.
Rathus, C. & Birch, R. G. (1992). Stable transformation of callus from electroporated sugarcane protoplasts. Plant Science, 82 (1), pp. 81-89. https://doi.org/10.1016/0168-9452(92)90010-J
Reis, R. R.; da Cunha, B. A.; Martins, P. K.; Martins, M. T.; Alekcevetch, J. C.; Chalfun, A., Jr; Andrade, A. C.; Ribeiro, A. P.; Qin, F.; Mizoi, J.; Yamaguchi-Shinozaki, K.; Nakashima, K.; Carvalho, J.; de Sousa, C. A.; Nepomuceno, A. L.; Kobayashi, A. K. & Molinari, H. B. (2014). Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant science: an international journal of experimental plant biology, 221-222, pp. 59-68. https://doi.org/10.1016/j.plantsci.2014.02.003
Ribeiro, C. W.; Soares-Costa, A.; Falco, M. C.; Chabregas, S. M.; Ulian, E. C.; Cotrin, S. S.; Carmona, A. K.; Santana, L. A.; Oliva, M. L. & Henrique-Silva, F. (2008). Production of a His-tagged canecystatin in transgenic sugarcane and subsequent purification. Biotechnology progress, 24 (5), pp. 1060-1066. https://doi.org/10.1002/btpr.45
Roberts, R.J. (2018). The Nobel Laureates Campaign Supporting GMO. Journal of Innovation & Knowledge, Volume 3, Issue 2, pp. 61-65. https://doi.org/10.1016/j.jik.2017.12.006
Rossouw, D.; Bosch, S.; Kossmann, J.; Botha, F. C. & Groenewald, J. H. (2007). Downregulation of neutral invertase activity in sugarcane cell suspension cultures leads to a reduction in respiration and growth and an increase in sucrose accumulation. Functional plant Biology: FPB, 34 (6), pp. 490-498. https://doi.org/10.1071/FP06214
Rossouw, D.; Kossmann, J.; Botha, F. C. & Groenewald, J. H. (2010). Reduced neutral invertase activity in the culm tissues of transgenic sugarcane plants results in a decrease in respiration and sucrose cycling and an increase in the sucrose to hexose ratio. Functional Plant Biology, 37 (1), 22-31. https://doi.org/10.1071/FP08210
Sanford, J. C. (1990). Biolistic plant transformation. Physiologia Plantarum, 79 (1), 206-209. https://doi.org/10.1111/j.1399-3054.1990.tb05888.x
Schneider, V. K.; Soares-Costa, A.; Chakravarthi, M.; Ribeiro, C.; Chabregas, S. M.; Falco, M. C. & Henrique-Silva, F. (2017). Transgenic sugarcane overexpressing CaneCPI-1 negatively affects the growth and development of the sugarcane weevil Sphenophorus levis. Plant cell reports, 36 (1), pp. 193-201. https://doi.org/10.1007/s00299-016-2071-2
Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J. J.; Qiu, J. L. & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature biotechnology, 31 (8), pp. 686-688. https://doi.org/10.1038/nbt.2650
Shu-Zhen, Z.; Ben-Peng, Y.; Cui-Lian, F.; Ru-Kai, C.; Jing-Ping, L.; Wen-Wei, C. & FeiHu, L. (2006). Expression of the Grifola frondosa Trehalose Synthase Gene and Improvement of Drought-Tolerance in Sugarcane (Saccharum officinarum L.). Journal of Integrative Plant Biology, 48 (4), pp. 453-459. https://doi.org/10.1111/j.1744-7909.2006.00246.x
Snyman S.J. (2004). Sugarcane Transformation. In: Curtis I.S. (eds). Transgenic Crops of the World. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2333-0_8
Snyman, S. J.; Meyer, G. M.; Richards, J. M.; Haricharan, N.; Ramgareeb, S. & Huckett, B. I. (2006). Refining the application of direct embryogenesis in sugarcane: Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant cell reports, 25 (10), 1016-1023. https://doi.org/10.1007/s00299-006-0148-z
Snyman, S. J.; Hajari, E.; Watt, M. P.; Lu, Y. & Kridl, J. C. (2015). Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant cell reports, 34 (5), pp. 667-669. https://doi.org/10.1007/s00299-015-1768-y
Songstad, D. D.; Petolino, J. F.; Voytas, D. F. & Reichert, N. A. (2017). Genome Editing of Plants. Critical Reviews in Plant Sciences, 36 (1), pp. 1-23. https://doi.org/10.1080/07352689.2017.1281663
Taparia, Y.; Fouad, W. M.; Gallo, M. & Altpeter, F. (2012). Rapid production of transgenic sugarcane with the introduction of simple loci following biolistic transfer of a minimal expression cassette and direct embryogenesis. In Vitro Cellular and Developmental Biology – Plant, 48 (1), pp. 15-22. https://doi.org/10.1007/s11627-011-9389-9
Taparia, Y.; Gallo, M. & Altpeter, F. (2012). Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell, Tissue and Organ Culture, 111, pp. 131-141. https://doi.org/10.1007/s11240-012-0177-y
Trujillo, JH. (2020). Ensamblaje de un genoma y huella molecular de caña de azúcar utilizando secuenciación de alto rendimiento. Tesis Doctoral. Universidad del Valle y Centro de Investigación de la Caña de Azúcar de Colombia, Cenicaña. Cali, Colombia.
van Beek, C. R.; Fernhout, J. J.; Kossmann, J.; Lloyd, J. R. & van der Vyver, C. (2018). Use of a Mutated Protoporphyrinogen Oxidase Gene as an Effective In Vitro Selectable Marker System that Also Conveys in planta Herbicide Resistance in Sugarcane. Tropical Plant Biology, 11 (3–4), 154-162. https://doi.org/10.1007/s12042-018-9208-0
Vickers, J. E.; Grof, C. P. L.; Bonnett, G. D.; Jackson, P. A. & Morgan, T. E. (2005). Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Australian Journal of Agricultural Research, 56 (1), pp. 57-68. https://doi.org/10.1071/AR04159
Vickers, J. E.; Grof, C. P. L.; Bonnett, G. D.; Jackson, P. A.; Knight, D. P.; Roberts, S. E. & Robinson, S. P. (2005). Overexpression of Polyphenol Oxidase in Transgenic Sugarcane Results in Darker Juice and Raw Sugar. Crop Science, 45 (1), pp. 354-362. https://doi.org/10.2135/cropsci2005.0354.
van der Vyver, C. (2010). Genetic transformation of the euploid Saccharum officinarum via direct and indirect embryogenesis. Sugar Tech, 12 (1), pp. 21-25. https://doi.org/10.1007/s12355-010-0005-9
van der Vyver, C.; Conradie, T.; Kossmann, J. & Lloyd, J. (2013). In vitro selection of transgenic sugarcane callus utilizing a plant gene encoding a mutant form of acetolactate synthase. In vitro cellular & developmental biology. Plant: journal of the Tissue Culture Association, 49 (2), pp. 198-206. https://doi.org/10.1007/s11627-013-9493-0
Wang, M. L.; Goldstein, C.; Su, W.; Moore, P. H. & Albert, H. H. (2005). Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic research, 14 (2),pp. 167-178. https://doi.org/10.1007/s11248-004-5415-6
Wang, Z. Z.; Zhang, S. Z.; Yang, B. P. & Li, Y. R. (2005). Trehalose synthase gene transfer mediated by Agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech, 7 (1), pp. 49-54. https://doi.org/10.1007/BF02942417
Wang, A. Q.; Dong, W. Q.; Wei, Y. W.; Huang, C. M.; He, L. F.; Yang, L. T. & Li, Y. R. (2009). Transformation of sugarcane with ACC oxidase antisense gene. Sugar Tech, 11 (1), pp. 39-43. https://doi.org/10.1007/s12355-009-0007-7
Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C. & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, 32 (9), pp. 947-951. https://doi.org/10.1038/nbt.2969
Wang, W. Z.; Yang, B. P.; Feng, C. L.; Wang, J. G.; Xiong, G. R.; Zhao, T. T. & Zhang, S. Z. (2017). Efficient Sugarcane Transformation via bar Gene Selection. Tropical Plant Biology, pp. 1-9. https://doi.org/10.1007/s12042-017-9186-7
Weng, L. X.; Deng, H.; Xu, J. L.; Li, Q.; Wang, L. H.; Jiang, Z.; Zhang, H. B.; Li, Q. & Zhang, L. H. (2006). Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Pest management science, 62 (2), pp. 178-187. https://doi.org/10.1002/ps.1144
Weng, L. X.; Deng, H. H.; Xu, J. L.; Li, Q.; Zhang, Y. Q.; Jiang, Z. D.; Li, Q. W.; Chen, J. W. & Zhang, L. H. (2011). Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic research, 20 (4), pp. 759-772. https://doi.org/10.1007/s11248-010-9456-8
Wu, H.; Awan, F. S.; Vilarinho, A.; Zeng, Q.; Kannan, B.; Phipps, T.; McCuiston, J.; Wanf, W.; Caffall, K. & Altpeter, F. (2011). Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane. In Vitro Cellular & Developmental Biology – Plant (November). https://doi.org/10.1007/s11627-015-9710-0
Wu, L. & Birch, R. G. (2007). Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant biotechnology journal, 5 (1), pp. 109-117. https://doi.org/10.1111/j.1467-7652.2006.00224.x
Wu, Y.; Zhou, H.; Que, Y. X.; Chen, R. K. & Zhang, M. Q. (2008). Cloning and identification of promoter Prd29A and its application in sugarcane drought resistance. Sugar Tech, 10 (1), pp. 36-41. https://doi.org/10.1007/s12355-008-0006-0
Yao, W.; Ruan, M.; Qin, L.; Yang, C.; Chen, R.; Chen, B. & Zhang, M. (2017). Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus. Frontiers in plant science, 8, pp. 104. https://doi.org/10.3389/fpls.2017.00104
Zale, J.; Jung, J. H.; Kim, J. Y.; Pathak, B. Karan, R.; Liu, H.; Chen, X.; Wu, H.; Candreva, J.; Zhai, Z.; Shanklin, J. & Altpeter, F. (2016). Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant biotechnology journal, 14 (2), pp. 661-669. https://doi.org/10.1111/pbi.12411
Zhang, J.; Zhang, X.; Tang, H.; Zhang, Q.; Hua, X.; Ma, X.; Zhu, F.; Jones, T.; Zhu, X.; Bowers, J.; Wai, C. M.; Zheng, C.; Shi, Y.; Chen, S.; Xu, X.; Yue, J.; Nelson, D. R.; Huang, L.; Li, Z.; Xu, H.; Ming, R. (2018). Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature genetics, 50 (11), pp. 1565-1573. https://doi.org/10.1038/s41588-018-0237-2
Zhang, L.; Xu, J. & Birch, R. G. (1999). Engineered detoxification confers resistance against a pathogenic bacterium. Nature biotechnology, 17 (10), pp. 1021-1024. https://doi.org/10.1038/13721
Zhang, M.; Zhuo, X.; Wang, J.; Wu, Y.; Yao, W. & Chen, R. (2015). Effective selection and regeneration of transgenic sugarcane plants using positive selection system. In Vitro Cellular & Developmental Biology – Plant, 51, pp. 52-61. https://doi.org/10.1007/ s11627-014-9644-y
Zhang, M.; Zhuo, X.; Wang, J.; Yang, C.; Powell, C. A. & Chen, R. (2015). Phosphomannose isomerase affects the key enzymes of glycolysis and sucrose metabolism in transgenic sugarcane overexpressing the manA gene. Molecular breeding: new strategies in plant improvement, 35(3), p. 100. https://doi.org/10.1007/s11032-015-0295-4
Zhangsun, D.; Luo, S.; Chen, R. & Tang, K. (2007). Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biología, 62, 386–393. https://doi.org/10.2478/s11756-007-0096-2
Zhao, Y.; Kim, J. Y.; Karan, R.; Jung, J. H.; Pathak, B.; Williamson, B.; Kannan, B.; Wang, D.; Fan, C.; Yu, W.; Dong, S.; Srivastava, V. & Altpeter, F. (2019). Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. Plant molecular biology, 100 (3), pp. 247-263. https://doi.org/10.1007/s11103-019-00856-4
Zhu, Y. J.; McCafferty, H.; Osterman, G.; Lim, S.; Agbayani, R.; Lehrer, A.; Schenck, S. & Komor, E. (2011). Genetic transformation with untranslatable coat protein gene of sugarcane yellow leaf virus reduces virus titers in sugarcane. Transgenic research, 20 (3), pp. 503-512. https://doi.org/10.1007/s11248-010-9432-3
- Caña de azúcar. 2. Transformación genética. 3. Edición genética. 4. Biobalística. 5. Agrobacterium tumefaciens. 6. CRISPR–Cas9.
López Gerena, J. & Jaimes Quiñónez, H. A. (2023). Transformación y edición genética de la caña de azúcar. En: Centro de investigación de la caña de azúcar de Colombia (Ed). Agroindustria de la caña de azúcar en Colombia. Cenicaña